CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON, AND INSTITUTO CHIMICA, UNIVERSITÁ DI CAGLIARI, CAGLIARI, ITALY

The Crystal Structure of Thiocyanatotriethylenetetraminecopper(II) Thiocyanate

By G. MARONGIU,¹⁸ E. C. LINGAFELTER,^{1b} and P. PAOLETTI¹⁰

Received February 13, 1969

Crystals of [Cu(trien)SCN]NCS (trien = triethylenetetramine, $C_6N_4H_{18}$) are orthorhombic. The space group is $P_{2,2,2_1}$ with four molecules in the unit cell of dimensions a = 10.803 (1), b = 9.381 (1), and c = 13.815 (2) Å. A total of 1836 independent reflections was measured with a Picker automatic diffractometer using Mo K α radiation. The structure was refined by full-matrix least squares to a conventional R factor of 0.040% for the 1506 observed reflections. The coordination around the central copper atom is square pyramidal with the copper atom about 0.4 Å above the plane of the four nitrogen atoms of the ligand molecule. The Cu–N basal plane bond length has a mean value of 2.016 (4) Å. The fifth, apical, position is occupied by the sulfur atom of a thiocyanate group; the Cu–S bond length is 2.607 (2) Å.

Introduction

In two recent papers,² the structures of the complexes of copper(II) and zinc(II) with β , β' , β'' -triaminotriethylamine (tren) have been reported. Both copper(II) and zinc(II) ions were found to be five-coordinate with a trigonal-bipyramidal coordination polyhedron. With the aim of making a comparison of the molecular parameters as the geometry of the ligand changes, we have investigated the crystal structure of Cu(trien)(NCS)₂, where trien = triethylenetetramine is the linear isomer of tren.

Experimental Section

[Cu(trien)SCN]NCS was prepared as described by Barbucci, et al.³

The crystals are blue prisms elongated along c. A crystal of dimensions $0.12 \times 0.20 \times 0.28$ mm parallel to a, b, and c, respectively, was selected and mounted along the c axis. Oscillation and equiinclination Weissenberg photographs showed the crystal to be orthorhombic; systematic absences observed for the odd orders of h00, 0k0, and, 00l are consistent with the space group $P2_{1}2_{1}2_{1}$. The cell constants and their estimated standard deviations were obtained by a least-squares fit of 20 2θ values $(31^{\circ} \leq 2\theta \leq 45^{\circ})$ taken on an automatic Picker diffractometer using Mo K α radiation ($\lambda 0.71069$ Å at 24°). The final values, with standard deviations in parentheses, are a = 10.803 (1), b = 9.381 (1), and c = 13.815 (2) Å.

The density, measured by the flotation method, was 1.53 g cm^{-s} and that calculated on the basis of four molecules in the cell is 1.545 g cm^{-s}.

The crystal was mounted with the *c* axis parallel to the ϕ axis of an automatic Picker diffractometer, equipped with a pulse height analyzer. The data were collected with Nb-filtered Mo K α radiation using the ω -2 θ scan (2 θ scan rate 2°/min); the scan rate was calculated using the formula of Alexander and Smith,⁴ $A + B \tan \theta$, with A set equal to 0.90 and B equal to 1.00. A background count was taken at each end of the scan range for 22 sec. Four standard reflections were measured every 5 hr to check the alignment of the crystal as well as the long-range stability of the apparatus. All reflections in one octant of the reciprocal lattice out to $2\theta = 55^{\circ}$ were measured. The intensity of each reflection was calculated as

$$I = k(C_{\rm S} - t'C_{\rm B} - 0.45)$$

and the standard deviation of this intensity was calculated as

$$\sigma_I = k \{ (1/10)(C_{\rm S} + t'^2 C_{\rm B}) + 0.25 + k'^2 (C_{\rm S} + t' C_{\rm B})^2 \}^{1/2}$$

where k is the scaling factor with respect to the standard reflections, $C_{\rm S}$ is the total recorded dekacounts in a scan of t seconds duration, $C_{\rm B}$ is the total recorded dekacounts per x seconds at background, t' = t/x, and k' is the estimated stability constant of the instrument.

The factor 1_{10} in the expression for σ_I arises from the fact that the measurements were recorded in dekacounts (and the variance in counts is equal to counts) and the terms 0.45 in I and 0.25 in σ_I arise from the fact that the recorded dekacounts are obtained by truncation.

In order to estimate the value of k' a set of eight reflections, covering the intensity range, was selected and the intensity of each was measured 25 times. A value of k' was calculated for each reflection so that the calculated σ_I was equal to the empirical value evaluated from the 25 measurements. The mean value of the eight determinations (k' = 0.07) was used in the general formula to calculate the standard deviations of the intensities for all of the reflections.

Of the total of 1847 reflections measured, 340 were coded unobserved, as their respective intensities were less than twice their estimated standard deviations, and assigned effective intensities of $2\sigma_I$.

Lorentz and polarization factors were applied to all intensities and the structure factor and its standard deviation were calculated for each reflection. The linear absorption coefficient for Mo K α radiation is 18.9 cm⁻¹ which gives transmission factors ranging from 0.72 to 0.85; no correction was applied for absorption effects.

Structure Determination and Refinement

The copper position was readily found from an unsharpened three-dimensional Patterson function. All of the remaining nonhydrogen atoms were located by a series of three-dimensional Fourier syntheses. All calculations were done on an IBM 7094, using the programs written or adapted by Stewart.⁵ The atomic scattering factors used were those of Cromer and Waber⁶ for Cu^{2+} , S, N, and C and those of Stewart, Davidson, and Simpson⁷ for hydrogen.

^{(1) (}a) Work done at University of Washington. (b) University of Washington. (c) Universitá di Cagliari.

 ^{(2) (}a) P. C. Jain and E. C. Lingafelter, J. Am. Chem. Soc., 89, 6131
(1967); (b) P. C. Jain, E. C. Lingafelter, and P. Paoletti, *ibid.*, 90, 519 (1968).
(3) R. Barbucci, G. Cialdi, G. Ponticelli, and P. Paoletti, J. Chem. Soc., A, 1775 (1969).

⁽⁴⁾ L. E. Alexander and G. S. Smith, Acta Cryst., 17, 1195 (1964).

⁽⁵⁾ J. M. Stewart, "Crystal Structure Calculations System for the IBM 709, 7090, 7094," Technical Report TR-64-6, Computer Science Center, University of Maryland, and Research Computer Laboratory, University of Washington, 1964.

⁽⁶⁾ D. T. Cromer and J. T. Waber, Acta Cryst., 18, 104 (1965).

⁽⁷⁾ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).

		Posi	tional Paramet	ters ($ imes 10^4$) a	and Thermal	Parameter	s (×10²)		
Atom	x/a	y/b	z /c	B_{11}	B_{22}	B_{33}	B_{12}	B 13	B_{23}
Cu	2101(1)	-48(1)	1071(1)	237(2)	314(3)	271(2)	11 (4)	1(3)	9(4)
S(1)	1111(2)	-202(3)	-646(1)	552(8)	739(13)	352(8)	94(12)	-131 (7)	-61(10)
S(2)	2013 (2)	3892(2)	4033 (2)	378(8)	578(10)	604(11)	68(9)	-15(11)	76(10)
N(1)	3492 (7)	-341(9)	-1458(4)	971(44)	776(51)	443(30)	-89(44)	254(31)	-113(33)
N(2)	1432(6)	6783 (7)	4085(6)	750(41)	488(31)	656(41)	-87(32)	-199(38)	-132(33)
N(3)	1019(6)	-1511(7)	1721(5)	280(28)	431(29)	367(32)	2(23)	7(24)	1 (23)
N(4)	3395(5)	-1617(6)	1070(5)	294(22)	429 (27)	480(32)	-9(20)	32(25)	4(27)
N(5)	3548(5)	1240(6)	789(5)	346(24)	352(24)	453(33)	-0(21)	9(22)	56(24)
N(6)	1295(7)	1722 (7)	1589(6)	370(32)	428 (30)	375(31)	22(25)	16(27)	42 (23)
C(1)	2497(7)	-283(8)	-1137(4)	877(45)	395(39)	211(23)	23(33)	17(30)	-9(27)
C(2)	1664(6)	5589(8)	4079(6)	310(29)	685(43)	342(35)	-91(28)	-64(27)	-153 (33)
C(3)	1602(8)	-2935(9)	1578(7)	489 (41)	396 (36)	416 (40)	-31(30)	-16(34)	-28(32)
C(4)	2947(10)	-2745(8)	1721(6)	467(38)	367(32)	641(50)	106 (39)	77(45)	80 (33)
C(5)	4550(7)	-892 (9)	1405(6)	279 (29)	659(47)	747(54)	32(33)	-68(31)	175(41)
C(6)	4731 (6)	427 (9)	813(7)	300(30)	608(47)	834 (56)	-43(28)	-1(34)	77 (39)
C(7)	3413(9)	2458(9)	1467(7)	524(47)	539(48)	497(47)	-154(39)	-29(36)	66 (38)
C(8)	2081~(13)	2961(9)	1398(8)	705(51)	341 (31)	635(51)	46(46)	157(50)	24 (33)
		Posi	tional Parame	ters ($ imes 10^3$) a	and Therma	l Parameter	rs (×10)		
H(331)	100 (6)	-133(6)	259(5)	54(17)					
11(000)	0 . (2)	1 (0 (0)							

TABLE I

H(331)	100(6)	-133(6)	259(5)	54(17)
H(332)	35(6)	-149(8)	153(6)	61(25)
H(31)	116(8)	-375(9)	192(7)	98 (31)
H(32)	149(5)	-326(6)	93(4)	32(14)
H(41)	319(6)	-245(6)	252(4)	60(17)
H(42)	340(5)	-372(6)	159(4)	50(15)
H(441)	340(8)	-180(7)	23(6)	80 (26)
H(51)	442 (6)	-59(6)	219(4)	70(19)
H(52)	518(6)	-175(7)	149(5)	52(18)
H(61)	540(5)	113(5)	118(4)	41 (13)
H(62)	491(7)	-14(10)	14(5)	119(26)
H(551)	351(9)	178(9)	30(6)	84 (33)
H(71)	365(5)	211 (5)	211(4)	24(12)
H(72)	391(5)	333(7)	112(5)	61(17)
H(81)	185(7)	378(7)	198(5)	66(18)
H(82)	194(10)	340(9)	70(7)	112(33)
H(661)	57(6)	182 (8)	145(6)	39(23)
H(662)	113(5)	154(5)	220(4)	10(12)

Refinement was carried out by full-matrix leastsquares, assigning unit weight to all the reflections (unobserved reflections with $F_{\rm c} < F_{\rm o}$ were given zero weight). The function minimized in the least-squares refinement was $\Sigma w(|F_{\rm o}| - |F_{\rm c}|)^2$ and the discrepancy factors quoted are $R_1 = \Sigma ||F_{\rm o}| - |F_{\rm c}|/\Sigma |F_{\rm o}|$ and $R_2 =$ $(\Sigma w(|F_{\rm o}| - |F_{\rm c}|)^2 / \Sigma w F_{\rm o}^2)^{1/2}$. Two cycles of leastsquares refinement with individual isotropic temperature factors reduced R_1 to 0.083 and one cycle anisotropic to 0.054.

A three-dimensional Fourier synthesis calculated at this stage revealed the positions of the hydrogen atoms, whose peak heights ranged between 0.63 and 0.39 e⁻/Å³. When the hydrogen atoms were included in the $F_{\rm e}$ calculation, assigning to each hydrogen atom an isotropic temperature factor equal to that of the atom to which it is bonded, $R_{\rm I}$ dropped from 0.054 to 0.046.

A total of 226 parameters, including anisotropic temperature factors of nonhydrogen atoms, isotropic temperature factors of hydrogen atoms, and the scale factor, were finally to be adjusted. Because of the limitations of core size on the computer, all of these variables could not be refined simultaneously. Refinement was completed by four successive cycles of least squares, where the weights were assigned values equal to $1/\sigma^2$. In the first cycle all parameters of all nonhydrogen atoms were varied while the parameters of the hydrogen atoms were held constant and in the final three cycles all of the parameters of the atoms (both hydrogen and nonhydrogen) of the organic ligand were allowed to vary while the parameters of the copper and thiocyanate ions were held constant. The final values of R_1 and R_2 are 0.040 and 0.032, with the average shift-to-error ratio of 0.2σ and the maximum ratio of 0.60σ .

The final atomic parameters and their standard deviations are given in Table I. The final values of observed and calculated structure factors are given in Table II.

Discussion

The crystal structure consists of five-coordinate $Cu(trien)SCN^+$ cations, with a distorted squarepyramidal configuration, and SCN^- anions, connected by a network of $N-H\cdots N$ and $N-H\cdots S$ hydrogen bonds.

A perspective drawing of the Cu(trien)SCN⁺ group is shown in Figure 1. The square-pyramidal coordination polyhedron of the Cu²⁺ ion consists of the nitrogen atoms of trien below the Cu²⁺ ion in the basal positions and the sulfur atom of a thiocyanate group on the

TABLE II

Observed and Calculated Structure Factors (Columns Are 1, $10F_0$, and $10 |F_0|$)

€.€.L i BCI 564 € 2720 2715 6 553 864	1 201 223 2 06 05 8 115 124 4 217 202 5 191 202	0 140 147 10 44 60 11 184 177 12 64 40 13 184 177 14 64 40	11 316 315 12 95 89 13 166 165 16 66 36 15 66 72	1,3,L 0 1408 1404 1 344 344 2 370 371	1 76 95 2 154 143 3 96 99 4 295 253 5 100 97	8,4,6 1 330 333 2 185 189 3 113 113	13 105 176 14 40 75 15 112 107 4.5,L	8 218 212 9 250 241 18 142 157 11 111 121 12 107 103	2 178 143 3 244 256 4 144 145 5 62 61 6 155 143	1 201 193 2 900 34 3 316 313 4 900 2 5 600 14	8 70 01 4 56 8' 5 54 Ni 6 57 4u
6 365 240 16 669 605 13 157 157 19 133 216 14 72 32 1404L	4 [9] 100 7 400 14 8 34 39 9 168 105 16 169 154 11 440 54 12 550 28	14 510 27 15 124 115 16 650 9 7+1+1 0 199 196	16 120 103 17 117 100 4,2,L 0 596 576 1 555 566	3 344 594 4 543 591 5 376 371 6 342 543 7 219 217 8 350 359 9 149 167	8 247 247 7 540 31 8 71 84 9 83 84 10 188 152 12,3,1	4 844 85 5 374 343 6 58 58 7 654 34 8 334 49 5 230 216 10 47 85	0 81 79 1 424 434 2 64 72 3 585 566 9 98 92 5 135 138	13 92 103 14 90 95 5.8.L 0 420 14 1 211 212	7 357 216 6 120 128 9 60 64 10 139 131 11 119 133 12 73 65 13 73 61	6 530 35 7 256 262 8 74 77 9 66 61 10 550 37 11 134 117	9,954 0 F1 35 1 115 722 2 939 16 3 69 64
6 290 C 1 260 248 2 1113 1063 3 251 269 4 739 734 5 999 592	11,0,L 0 470 0 1 600 14 2 153 165 3 676 42	2 101 105 3 272 271 4 125 132 5 565 565 6 166 107 7 45* 23	3 519 514 4 527 520 5 447 449 6 89 102 7 76 67 8 341 375	10 300 352 11 50 46 12 114 116 13 70 44 14 194 300 15 67 39 16 500 5	0 699 18 1 103 194 2 166 170 3 80 79 4 779 66 5 94 83	12 510 24 13 105 103 9141L C 72 45	7 403 407 6 72 55 9 155 158 10 94 110 11 196 188 12 509 18	3 333 331 4 168 104 5 61 76 6 103 103 7 204 274 9 102 92	5,7,4 0 44 14 1 218 217 2 440 24 3 157 154	0 530 15 1 135 143 2 141 120 8 102 102 4 126 122	0.10.L 0 288 288 1 490 2 2 59 62 3 696 19 4 195 193
6 363 553 7 145 146 8 54 45 5 50 39 10 214 218 11 175 165 12 260 290	6 668 25 5 479 6 6 152 161 7 768 44 8 61 87 9 548 21 10 61 84	9 241 217 9 367 363 10 58 56 11 160 132 12 66 92 13 186 191 16 639 67	9 432 432 10 306 310 11 188 184 12 110 95 13 199 204 14 225 228 15 154 135	17 30- 43 2+3+L 0 32+ 18 1 373 367 2 604 593	6 143 145 7 444 13 8 96 111 18.3.L 0 177 186	2 361 359 3 113 116 4 140 161 5 64 43 6 214 219 7 211 212	14 57 62 7+3-jL 0 56+ 10 1 202 201	10 410 35 10 410 15 11 145 154 12 620 16 13 720 94 14 640 32	4 367 32 5 319 314 6 67 56 7 75 72 8 66 70 9 280 264 10 69* 57	5 133 161 6 54 47 7 620 33 8 87 48 9 181 133 10 550 16 11 58 47	5 439 23 6 123 121 7 81 72 8 81 98 9 540 7 10 109 102
13 233 212 14 540 44 19 210 1 14 178 183 17 164 57 2,0,L	11 67 50 12:07L 0 343 341 1 680 15 2 654 67	15 140 130 8+1+L 6 133 134 1 367 369 2 601 396	14 84 84 5,2,L 0 261 256 1 663 673 2 603 576	4 178 181 5 396 405 6 344 362 7 613 629 8 229 246 9 136 175	1 720 22 2 550 40 3 58 35 6 169 163 5 560 0 0,4+L	9 500 25 10 50 40 11 147 167 12 135 117	3 182 188 4 90 101 5 184 191 6 81 81 7 95 88 8 120 109	0 44 70 1 314 313 2 308 309 3 186 173 4 142 132	11 700 00 12 65 52 13 136 116 6,7,L 0 217 212	7,8,L 0 610 28 2 546 30 3 274 276 4 680 29	L.10.L 0 213 125 2 160 164 3 80 14 6 73 70 5 499 24
0 1856 1861 1 117 117 2 209 202 3 45 77 4 1362 1339 5 207 205	3 340 3 4 253 249 5 344 40 5 148 150 7 710 15 8 89 86 9 45 87	3 387 395 4 276 283 5 171 168 4 177 181 7 363 374 8 224 225 9 87 94	3 413 413 4 225 226 5 126 113 6 232 240 7 368 397 8 121 109 9 234 230	10 106 110 11 358 361 12 180 180 13 153 150 14 686 12 15 36 47 16 142 130	0 459 470 1 324 37 2 165 170 3 177 140 4 403 479 5 137 147	C 209 210 1 162 155 2 53 52 3 52 68 4 135 167 5 155 168	0 200 200 10 114 114 11 55 35 12 550 26 13 129 139 8:5;L	5 390 385 6 61 64 7 53 32 6 64 90 9 306 307 10 67 60 11 69 100	1 192 185 2 536 82 3 338 544 4 170 145 5 53 25 6 71 58 7 278 274	5 490 37 6 470 14 7 205 196 8 59 30 9 73 75 10 550 11	8 146 137 7 78 60 8 79 72 9 520 22 10 809 65 2,10,L
7 350 90 8 501 496 9 205 211 10 583 567 11 630 52 12 450 12	13,0,L 0 76* 0 1 70* 31 2 163 169 3 71* 33	10 45% 25 11 214 221 12 94 90 13 162 166 14 64# 27 9,1,L	10 118 124 12 599 16 13 154 139 14 69 55 15 136 118 16 644 38	17 ¥2 85 3+3+L 0 830 827 1 675 663 2 300 299	6 202 214 7 460 18 8 206 215 9 510 4 10 105 120 11 596 4 12 124 121	7 104 45 6 63 64 9 103 56 10 76 84 11 66 64	0 45* 23 1 250 247 2 80 79 3 281 289 4 114 112 5 120 126	12 /14 32 13 141 143 7,6,L 0 119 109 1 193 191	73 63 9 56 57 10 70 74 11 121 126 12 530 25 7,7,L	8,8,L 0 95 105 1 131 131 2 509 35 3 90 74 4 105 93	0 233 224 1 94 95 2 61 67 3 102 81 4 175 174 5 99 97
14 395 305 15 534 2 14 46 94 17 128 134 3,0,L	5 720 23 6 95 110 14,0,L 0 151 130	0 51* 20 1 442 447 2 62* 32 3 220 213 4 65 71 5 330 332 4 52* 41	0 263 261 1 268 248 2 187 205 3 366 370 4 185 184	4 706 703 5 624 615 6 103 107 7 190 192 8 404 411 9 286 285	14 116 122 15 690 47 16 580 35 1,4,L	0 53# 2C 1 102 94 2 269 265 3 114 11C 4 136 130	7 289 282 8 66 84 4 75 70 10 504 18 11 176 174 12 724 46	3 261 264 4 186 190 5 51 60 6 51 35 7 230 244 8 118 120	0 499 9 1 238 240 2 51 64 3 166 159 4 53 34 5 273 276	57 57 7 520 12 8 85 77 9,8,1	7 56 53 79 70 9 67 59 3,10,L
0 95* 0 1 1016 585 2 219 195 3 540 514 4 571 563 5 509 506 4 59 88	0,1,L 0 264 0 1 146 151 2 1517 1537 3 255 267	7 111 112 8 123 122 9 120 114 10 66 75 11 76 71 12 112 95 13 56 65	6 47 78 7 203 207 8 130 136 9 361 361 10 51 47 11 161 151 12 61 75	11 109 107 12 60 73 13 130 128 14 263 261 15 63# 43 16 94 80	L 136 146 2 685 692 3 180 185 4 192 191 5 167 176 6 590 616 7 233 246	6 181 190 7 45 63 6 169 184 5 540 22 12,4,1	9,5,L 0 244 247 1 202 210 2 100 100 3 131 121 4 107 149	10 510 24 11 174 168 12 720 31 8.4.L 0 650 35	7 73 51 8 55 55 9 222 208 10 64 42 11 81 47 4.7.L	1 119 115 2 83 81 3 196 125 4 710 11 5 67 55 6 56 69 7 101 118	1 116 127 2 148 140 3 137 144 4 104 99 5 98 87 6 113 116 7 111 120
7 603 604 8 244 250 9 70 60 10 66 72 11 281 274 12 79 53 13 272 249	4 517 524 5 48 24 6 838 869 7 88 40 8 792 811 9 63* 17 10 178 182	10+1+L 0 52# 25 1 155 143 2 255 241 3 113 120	13 227 222 14 510 33 15 191 190 7,2,L 0 349 363	4,3,L 0 119 129 1 816 811 2 940 929 3 937 932 4 324 320	8 385 408 9 103 97 10 218 222 11 165 170 12 365 360 13 60* 53 14 67* 47	C 150 158 1 70 70 2 700 45 3 100 76 4 121 126 5 640 21 6 91 98	5 164 176 6 179 173 7 88 96 6 86 97 9 88 92 10 132 132 11 65 71	1 293 279 2 68 70 3 120 119 6 546 40 5 260 262 6 71 82 7 61 48	0 144 144 1 151 143 2 135 137 4 106 107 5 86 55 6 90 88	10,8,L 0 (6) (62 1 66 82 2 726 30 3 726 37	8 96 58 9 64 54 4,(0,(0 153 138 1 150 135
14 116 101 15 69# 35 16 60 73 17 166 161 6,0,6	11 107 107 12 578 599 13 89 81 14 195 176 15 71 57 16 188 195 17 78* 48	4 44 57 5 106 116 6 257 251 7 157 167 8 184 181 5 62° 20 10 101 100	L 384 383 2 188 190 3 494 511 4 313 314 5 54 60 6 71 70 7 395 398	5 220 210 6 143 145 7 521 522 8 158 169 9 165 171 10 95 108 11 235 233	15 54• 20 16 150 152 2,4,L 0 639 625 1 483 682	7 65° 39 13,4,L C 55° 8 1 55° 35 2 104 102	10,5,L 0 60+ 0 1 121 111 2 121 126 3 119 116	8 109 96 9 175 166 10 94 78 11 71 87 9,6,L	7 184 187 8 45 73 9 634 47 10 644 33 9,7,1	4 129 125 0,9,L 0 464 0 1 133 125 2 188 181	2 54 54 3 142 122 4 128 110 5 129 115 6 644 33 7 710 44 8 720 55
1 141 143 1 141 143 2 44* B 3 105 106 4 182 163 5 207 206 6 161 156 7 114 310	L+1+L 0 1499 1459 1 357 337 2 273 260 3 277 294	12 196 185 12 196 185 11,1,4 0 283 294 1 55* 45	9 172 181 10 88 79 11 205 198 12 539 39 13 184 167 14 71 77	12 320 34 13 143 143 14 490 25 15 100 111 16 58 52 5,3,L	2 L39 136 3 146 145 5 564 562 5 729 737 6 180 180 7 320 327 8 308 324	0,5.L 0,744 C 1 140 142 2 454 54	5 65 61 6 130 126 7 110 114 8 63 77 9 514 15 10 75 62	1 154 146 2 192 193 4 126 111 5 112 109 6 114 119 7 132 147	0 131 126 1 172 175 2 49* 4 3 108 102 4 100 101 5 156 165 6 57 36	3 75 66 6 200 187 5 88 92 6 169 179 7 54 2 8 202 208 9 369 54	5,10,L 0 60 68 1 169 168 2 63 68 3 179 177
8 483 484 9 347 366 10 396 383 11 930 20 12 174 182 13 161 185 14 247 248	5 241 251 6 377 367 7 261 285 8 278 279 9 63 57 10 207 220 11 105 97	3 00 98 4 198 193 5 54 41 6 130 143 7 80 75 8 77 57 9 64 80	6,2,L 0 117 116 1 471 478 2 510 43 3 272 278	0 358 345 1 344 342 2 318 324 3 482 480 4 309 309 5 343 348 6 126 127	10 193 205 11 121 118 12 91 95 13 86 77 14 192 192 15 498 19	4 490 29 5 380 36 6 303 305 7 510 51 8 255 267 5 65 46 10 231 242	11+5,L 0 281 203 1 119 107 2 50% 103 3 6%* 63 4 186 192	5 71+ 49 10 61 34 10,67L 0 180 17L 1 153 150	55 64 9 116 104 10,7,L 0 639 32 1 60 74	10 119 10 11 640 18 12 134 134 1,9,6 0 119 136 1 540 47	5 69 61 6 65 57 7 141 L27 6,10,L
15 72 80 16 63* 33 17 64* 47 5,0,L 0 54* 0	12 129 124 13 85 73 14 184 189 15 73 46 16 499 46 17 69 66	10 89 95 11 73• 36 12+1+1 0 68• 12 1 41• 37	4 257 268 5 353 365 6 56 54 7 133 124 8 183 185 9 169 162 10 119 129	7 236 227 8 147 146 9 392 344 10 153 156 11 138 139 12 660 45 13 146 145	3+4+L 0 247 254 1 136 134 2 936 930 3 309 310	11 58 61 12 3C7 3C7 13 540 17 14 610 6 15 640 33 16 166 147	5 107 112 6 145 158 7 56 51 8 80+ 52 12,5,L	2 69• 32 3 90 62 4 119 126 5 144 145 6 57 54 7 71• 25 8 74 59	2 168 148 3 100 91 4 648 27 5 80 42 6 120 117 7 108 94	2 118 120 3 524 15 4 129 128 5 101 84 6 194 192 7 54 34 8 79 85	L 87 103 2 63* 39 3 78 75 4 54* 27 5 96 102 6 69 24
2 492 485 2 153 146 3 1183 1186 4 247 253 5 200 206 6 53 84 7 752 745	2,1,L 0 180 149 1 161 171 2 707 689 3 671 659 4 703 697	2 267 270 3 85 86 4 68 80 5 63 54 6 193 187 7 55 38 8 119 117	11 60 70 12 50* 10 13 53 95 14 107 98 9,2+L	14 119 112 15 169 178 16 730 25 4,3,L 0 138 144	4 341 345 5 88 91 6 264 275 7 323 324 8 272 265 9 101 105 10 49 42	1,5,1 0 838 841 1 258 253 2 280 285 3 57 54 4 600 407	0 63* 25 1 56 54 2 105 115 3 66 54 4 72* 29 5 73* 36	ll+6+L 0 630 22 1 63 75 2 160 168 3 96 77	11,7,L 0 139 144 1 55* 39 2 56* 19 3 55* 30 4 116 104	9 42 68 10 142 129 11 724 37 12 574 41 2:9;L	7,10,1 4 550 26 3 151 140 2 640 29 1 111 98 0 640 22
5 239 236 10 56* 11 11 270 27C 12 53* 38 13 55 92 14 54* 5 16 17 164	5 743 765 6 427 425 7 120 124 8 634 644 9 293 296 10 128 113 11 298 293	9 430 27 13,1,4 0 138 153 1 69 81 2 540 27	1 121 128 2 214 216 3 130 141 4 156 163 5 170 173 6 204 197 7 240 144	1 506 517 2 117 120 3 597 605 4 71 70 5 107 111 4 208 200 7 356 391 4 11	11 223 231 12 144 139 13 117 111 14 62 ⁴ 25 15 94 65 14 102 97	5 176 172 6 536 545 7 117 115 8 232 246 9 84 72 10 380 394 11 59# 41 12 59# 41	0 791 HDZ 1 315 307 2 172 175 3 245 245 4 508 513	6 63 63 5 790 63 6 119 119 12.6.L C 119 127	G, 8, L O 415 410 1 55 10 2 128 125 3 126 112	0 117 110 1 83 77 2 229 233 3 96 91 4 145 152 5 99 86 6 160 149	8,10,L 0 75 64 0,11,L
14 54+ 12 6+0+L 0 394 39C 1 112 L15 2 59 48	13 142 138 14 60* 40 15 L01 87 16 169 154 17 113 105 3:1:L	4 147 157 5 74 54 6 60 61 0+2+L 0 1053 1053	a 132 124 9 92 88 10 94 84 11 194 201 12 80 102 13 102 106	9 124 113 10 66 43 11 172 173 12 62 72 13 132 114 14 71* 38 15 66 101	0 364 365 1 425 622 2 151 154 3 271 270 4 292 297 5 494 494	13 59 77 14 207 205 15 52# 28 16 55# 24 2,5,L	6 281 289 7 468 20 8 143 147 9 50 49 10 231 221 11 75 66 12 528 26	2 73* 38 Q,7+L C 72* 0 1 58 61 2 550 560	5 94 94 6 257 261 7 66 ⁶ 14 8 118 107 10 193 197 11 68 57 12 554 24	1 172 172 9 774 40 10 57 52 11 136 99 3,9,L	L 96 83 2 178 176 3 54 34 4 550 37 5 94 77 6 117 116 7 444
3 94 56 4 286 285 5 459 449 6 56 85 7 153 145 8 08 80 9 513 520	0 307 309 1 1066 1026 2 65 76 3 290 288 4 326 324 5 838 840	1 43 70 2 504 937 3 33* 44 4 703 493 5 183 198 4 1053 1101 7 202 215	10,2+L 0 312 328 1 200 210 2 121 124 3 136 149 4 215 227	7,3,L 0 15 109 1 290 290 2 256 260 3 196 211	6 92 104 7 63 85 8 197 191 9 454 447 10 237 240 11 220 220 12 52° 26	0 189 195 1 227 222 2 248 27C 3 223 219 4 229 217 5 183 178 e 249 272	13 620 13 14 173 161 15 510 6 1réni 0 51 55	3 430 8 4 44 29 5 584 34 6 340 338 7 544 7 8 160 158 9 544 1	13 45 43 1.8,L 0 66 48 1 260 251 2 252 260	0 125 127 1 161 148 2 57 74 3 125 114 4 106 119 5 187 179 4 76 80	1,11,L 0 148 140 1 550 50 2 548 33 3 540 30
10 91 76 11 540 36 12 90 56 13 256 244 14 548 25 15 106 117 16 74 82	6 157 142 7 289 290 8 513 512 9 347 339 10 617 425 11 257 246 12 135 146	8 193 189 9 520 5 10 442 449 11 179 185 12 99 108 13 72 93 14 171 185	5 173 185 6 193 196 7 82 84 8 83 86 9 126 131 10 130 116 11 78* 62	4 110 116 5 324 320 6 168 166 7 78 91 8 106 104 9 257 264 10 51 53	13 144 141 14 172 178 15 155 157 16 649 51 5,4,1	7 243 257 8 213 223 9 53* 45 10 136 151 11 174 160 12 170 175 13 130 139	1 431 442 2 546 561 3 42 39 4 190 197 5 452 456 6 384 393 7 121 122	10 103 94 11 748 54 12 221 203 13 55 38 14 544 28 1+7,L	3 111 106 4 216 127 5 174 166 6 171 177 7 92 93 8 184 189 9 51 42	7 55 35 8 79 90 9 165 144 10 83 80 11 520 50 4,9,L	4 124 117 5 56 59 6 56 47 2,11,L 0 510 40
7,0,L C 54# 0 1 438 446 2 261 258 3 776 777	13 111 120 14 285 272 15 121 119 16 62 43 17 66 50 4,1,L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 53 J3 11,2,L 0 66 60 1 58 46 2 244 245	11 010 33 12 74 65 13 160 157 14 65 76 8,3,1	0 37° 6 1 345 347 2 284 282 3 428 423 4 224 229 5 87 83 6 86 76	14 540 38 15 53* 40 16 90 165 3+5+L 0 422 429	8 302 315 9 158 161 10 141 154 11 58 58 12 275 279 13 696 59 14 566 44	0 692 713 1 186 185 2 132 141 3 240 252 4 490 495 5 69 75	10 74 76 11 113 103 12 127 146 13 540 34 2,8,L	0 520 16 1 125 114 2 190 186 3 132 128 4 52 67 5 34 62	1 82 72 2 163 150 3 62 73 4 648 50 5 74 61 6 91 90 7 74 56
5 424 20 6 614 14 7 633 427 6 494 25 5 203 199 10 63* 20 11 293 289	0 327 328 1 345 337 2 570 563 3 345 341 4 465 465 5 192 191 6 153 155	2 421 429 3 195 180 4 444 430 5 278 282 6 399 487 7 288 299 8 599 404	4 96 89 5 101 97 6 222 224 7 54 63 8 146 149 9 766 64	1 154 151 2 342 330 3 268 244 4 68 85 5 123 127 6 172 190 7 362 351	7 226 239 8 183 181 9 103 109 10 119 127 11 117 124 13 112 90 14 63 60 15 123 105	2 135 135 3 149 154 4 458 464 5 252 259 6 357 351 7 133 140 8 315 304	2:4.L 0 411 416 1 382 385 2 123 130 3 250 259	7 191 190 8 144 137 9 106 115 10 191 189 11 76 62 12 618 35	0 356 355 1 92 97 2 90 84 3 459 18 4 278 274 5 144 144 6 196 194 7 56 45	6 98 106 7 139 126 8 92 84 9 724 56 10 644 38 5,9,4	3,11,L 0 119 114 1 93 94 2 94 81 3 58 47 4 80 93
12 78 78 13 159 150 14 93 92 15 88 84 8,0,L	7 245 241 8 223 218 9 80 82 10 54 73 11 191 186 12 51* 23 13 59* 35	9 73 40 10 299 302 11 255 259 12 442 434 13 143* 129 14 48* 19 15 55 27	12.2.L 0 258 265 1 57 39 2 69 73 3 61 75	# 79 45 9 70 A4 10 106 109 11 226 219 12 708 38 13 107 104 14 65* 10	6,4,L 0 117 114 1 396 406 2 181 183 3 344 865	5 144 145 10 348 353 11 87 55 12 66* 47 13 89 81 14 155 188 15 43* 44	4 383 394 5 174 184 6 291 283 7 578 26 8 264 277 9 51 18 10 244 243	14 123 131 2+7+L O 142 142 1 179 187 2 446 480	# 123 124 9 119 118 10 173 174 11 54# 38 12 72# 47 13 73 61	0 67* 48 1 239 229 2 96 70 3 160 148 4 105 92 5 196 194	5 112 106 6 73 61 4,11,L 7 616 17
0 191 188 1 633 439 2 459 6 3 229 239 4 238 242 5 485 491 6 106 103	14 53 72 15 123 135 16 72* 40 17 107 96 5,1,L	16 179 174 17 63 62 2+2+L 6 453 427 1 572 362	4 223 226 5 709 39 6 144 146 7 44 54 8 102 109 13,2,1	9,3,L 0 295 308 1 199 202 2 162 173 3 469 22	4 159 170 5 472 469 6 229 233 7 169 166 8 91 100 9 426 422 10 70 81	4,5,L 0 175 170 1 342 344 2 212 215 3 542 355	11 53 57 12 116 119 13 64 35 14 138 147 15 67 41 3,6,L	3 42 79 4 122 124 5 201 194 6 321 314 7 104 104 8 179 180 9 51 99	3,8,L 0 90 99 1 47 65 2 177 183 3 135 134 * 85 93	7 940 12 4 46 72 9 131 126 10 734 35 6,9,1	3 94 94 2 71 80 1 85 67 0 52 14 5,11,4
7 44 45 8 209 208 9 190 199 10 186 193 11 71 43 12 43* 41 13 108 109 14 138	0 223 219 1 388 369 2 40 53 3 341 340 4 332 331 5 731 724 6 129 132 7 15	2 234 227 3 375 393 4 630 626 5 539 543 6 510 517 7 414 415 5 199 211 10 62 105	G 65 67 1 72 59 2 174 161 3 67 43 4 101 92 5 540 31	4 223 234 5 239 244 4 159 154 7 71 62 8 114 115 9 142 134 10 127 115	11 129 122 12 450 39 13 187 189 14 520 33 15 185 144 7,4,6	4 321 317 5 43 57 4 54 44 7 395 403 8 187 145 9 210 211 10 108 96	0 2C7 203 1 244 244 2 385 389 3 214 215 4 359 355 5 204 221	10 120 107 11 98 90 12 156 137 13 95 77 14 69 24 3,7,L	5 94 96 6 103 107 7 205 197 8 95 97 9 56 106 10 63 42 11 173 166	0 61 53 1 164 154 2 514 36 3 141 144 4 87 64 5 70 59 6 706 42	0 55* 38 1 92 85 2 74 75 3 72* 44 4 46 58 6,11,1
9,0,L 0 644 0 1 304 293 2 60 41 3 246 256	8 210 212 9 682 674 10 109 174 11 252 245 12 57 60 13 271 234 14 134 154	11 105 94 12 43 86 13 117 120 14 283 266 15 539 13 16 55 47 17 88 43	0,3,4 0,3,4 0 400 0 1 510 522 2 214 225 3 350 197	12 720 40 13 800 75 10,3,L 0 580 37 1 125 135	0 62 71 1 191 194 2 326 323 3 268 272 4 112 121 5 126 120 6 99 114	12 490 36 13 168 160 14 770 57 15 101 97 5x5+L	7 140 150 8 261 261 9 137 135 10 65 64 11 113 111 12 114 125 13 85 92	0 241 252 1 251 238 2 218 216 3 212 207 4 303 305 5 209 202 6 110 104	4,4,L 0 160 168 1 108 104 2 57 53 3 580 33	4 65 56 9 739 40 7,9,L 0 349 8 1 141 147	0 564 L7 O;L2;L 0 87 85 1 548 24 2 558 14
4 640 34 5 221 215 6 122 128 7 303 291 8 79 75 5 830 4 18 77 40	15 213 217 14 939 24 6+1+L 1 254 24	3+2+L 0 144 147 1 630 613 2 636 624 3 576 884	4 46 40 5 319 321 6 425 437 7 135 129 4 291 205 9 120 101 10 308 322	2 211 221 3 07 00 4 60 02 5 121 131 6 216 223 7 177 103 8 151 156	7 274 284 8 78 65 9 500 6 10 71 83 11 163 174 12 540 30 13 64 63	0 127 120 1 72 71 2 131 134 3 150 157 4 148 150 5 193 200 4 141 144	14 644 17 15 61 75 4,4,L 0 474 34 1 311 313	7 51 56 8 192 202 9 108 126 10 150 159 11 549 24 12 75 62 18 78 62	6 100 105 5 103 106 6 530 61 7 676 28 8 119 131 9 177 175 10 114 110	2 540 14 3 108 109 4 630 8 5 180 176 6 637 36 7 660 26 8 36 17	1,12,L 0 +++ 7 1 55+ 30 2 L25 100
11 146 211 12 110 113 13 113 122 10-0+L 9 356 349	2 251 244 3 543 543 4 414 420 5 134 131 6 91 95 7 386 340 8 159 144	4 401 395 5 263 255 6 209 208 7 517 512 8 261 263 9 57 53 18 71 53	11 69 58 12 345 336 13 520 32 14 470 11 15 628 6 16 137 134 17 530 32	9 434 25 10 56 111 11 132 137 11,3,L 8 336 361	14 640 19 8,4,6 0 55 48	7 58 107 8 67 67 9 303 299 10 128 125 11 63 67 12 68* 21	2 263 261 3 165 162 4 134 134 5 340 342 6 122 125 7 76 67	14 80 105 4+7+L 0 73 73 1 160 177	11 640 58 12 650 29 5-0-L 0 87 81	8,9,L 0 69 70 L 70 69 2 63 90	2,12,L 0 87 48 1 58 50

Figure 1.—Perspective drawing of cation showing labeling of atoms.

apical position. The conformation adopted by the trien is quite different from that adopted in the two cobalt(III) compounds β -[Co(trien)(glyglyOEt)]-(ClO₄)₃·H₂O and β -[Co(trien)Cl(H₂O)](ClO₄)₂, recently reported,⁸ in which the four nitrogen atoms occupy one apical position and three equatorial positions of an octahedron. The geometry of the four nitrogen atoms is close to a trapezoid whose sides are: 2.722 Å [N(3)-N(4)], 2.713 Å [N(4)-N(5)], 2.711 Å [N(5)-N(6)], 3.053 Å [N(6)-N(3)]. The Cu–S vector is nearly perpendicular to the basal plane; the angle of 2° with the normal to the plane is hardly significant.

The equation of the basal plane, calculated with reference to the direct cell, is: 4.071x + 0.552y + 12.770z = 2.590. The copper atom is 0.37 Å above the plane, while the four nitrogen atoms are alternately above and below the plane: N(3), +0.06 Å; N(4), -0.07 Å; N(5), +0.07 Å; N(6), -0.06 Å. Such slight distortion from planar toward tetrahedral has been reported for a number of Cu compounds.

The bond lengths and angles and their standard deviations are given in Table III. The four Cu–N bonds are not significantly different and their mean value of 2.016 (4) Å compares well with the values found in the analogous structures $Cu(en)_2(SCN)_2^9$ and $Cu(en)_2(NO_3)_2$.¹⁰

The apical Cu–S bond is a long bond, as normally found in five-coordinate copper compounds with square-pyramidal configuration.¹¹ Its length of 2.607 (2) Å, 0.3–0.6 Å longer than the value reported in copper(II) diethyldithiocarbamate,¹² is definitely in the range of copper–sulfur interaction.

There is no weak coordination of the copper atom below the basal plane; the nearest atom in this direction (N(1) of the symmetry related thiocyanate) is 3.491 Å away.

The intrachelate N-Cu-N bond angles, which are

Inorganic Chemistry

Table III Bond Distances (Å) and Angles (deg)

Coordina	ation Polyhedro Bor	on around Copper J ids	Atom
Cu-S(1) Cu-N(3)	2.607(2) 2.013(7)	Cu-N(5)	2.015(6)
Cu-N(4)	2.030 (5)	Cu-N(6)	2,008(7)
	Ang	gles	
Cu-S(1)-N(1) N(3)-Cu-S(1) N(4)-Cu-S(1) N(2)-Cu-S(1)	89.5(1) 97.5(2) 104.0(2)	N(5)-Cu-S(1) N(6)-Cu-S(1) N(4)-Cu-N(5) N(5)-Cu-N(6)	$100.1(2) \\ 101.1(2) \\ 84.3(2) \\ 84.7(0)$
N(3)-Cu- $N(6)N(3)$ -Cu- $N(4)$	98.9(3) 84.6(3)	N(b) = Cu = N(b)	84.7(3)
	Thiocyana Bor	te Groups ids	
S(1)-C(1) N(1)-C(1)	1.646(8) 1.164(10)	S(2)-C(2) N(2)-C(2)	1.637 (8) 1.147 (10)
	Ang	gles	
S(1)-C(1)-N(1)	178.0(6)	S(2)-C(2)-N(2)	178.1(7)
	Organic Bor	Ligand 1ds	
N(3)-C(3)	1.490(11)	N(5)-C(6)	1.489(9)
N(4) - C(4)	1.470(10)	N(5)-C(7)	1.484(11)
N(4)-C(5)	1,495(9)	N(6)-C(8)	1.463(12)
C(3) - C(4)	1.478(14)	C(7) - C(8)	1.518(16)
C(5)-C(6)	1.497 (12)		
	Ang	gles	
N(3)-C(3)-C(4)	106.8(7)	C(5)-C(6)-N(5)	108.9(6)
C(3)-C(4)-N(4)	109.2(7)	C(6)-N(5)-C(7)	117.8(6)
C(4)-N(4)-C(5)	114.4(7)	N(5)-C(7)-C(8)	107.0(7)
N(4)-C(5)-C(6)	108.4(6)	C(7)-C(8)-N(6)	107.0(7)
	Boi	ıds	
N(3)-H(331)	1.21(6)	N(6)-H(661)	0.82(7)
N(3)-H(332)	0.80(7)	N(6)-H(662)	0.89(5)
N(4)-H(441)	1.17(9)	N(5)-H(551)	0.85(8)
C(3)-H(31)	1.03(9)	C(6)-H(61)	1.10(5)
C(3)-H(32)	0.96(6)	C(6)-H(62)	1.09(8)
C(4)-H(41)	1.17(6)	C(7)-H(71)	0,98(6)
C(4)-H(42)	1.06(6)	C(7)-H(72)	1.09(6)
C(5)-H(51)	1.13(6)	C(8) - H(81)	1.14(7)
C(5)-H(52)	1.07(7)	C(8) - H(82)	1.06(9)

equal to the mean value 84.5° within one standard deviation, agree well with those reported in related structures [84.1° in [Cu(tren)NCS]SCN,¹ 85° in Cu(en)₂(SCN)₂,⁹ 86° in Cu(en)₂(NO₃)₂¹⁰].

The bonded thiocyanate group is oriented parallel to the equatorial plane and extends in the direction away from the "open" side; the angle Cu–S(1)–N(1) is 89.5°, which compares with the value of 90° reported in Cu(NH₃)₄(SCN)₂.¹³

All three ethylenediamine rings have the gauche configuration; the N(3)–C(3)–C(4)–N(4) ring has a k conformation¹⁴ and an almost symmetrical gauche form: C(3) is 0.38 Å above the N–Cu–N plane and C(4) is at -0.32 Å. The other two rings have a k' conformation and an unsymmetrical form, as observed in other copper compounds; C(5), C(6), C(7), and C(8)

⁽⁸⁾ D. A. Buckingham, P. A. Marzilli, I. E. Maxwell, A. M. Sargeson, M. Fehiman, and H. C. Freeman, Chem. Commun., 488 (1968).

⁽⁹⁾ B. W. Brown and E. C. Lingafelter, Acta Cryst., 17, 254 (1964).

⁽¹⁰⁾ Y. Komiyama and E. C. Lingafelter, *ibid.*, **17**, 1145 (1964).

⁽¹¹⁾ E. L. Muetterties and R. A. Schunn, *Quart Rev.* (London), **20**, 245 (1966).

⁽¹²⁾ B. H. O'Connor and E. N. Maslen, Acta Cryst., 21, 828 (1966), and references reported for Cu-S bonds.

⁽¹³⁾ M. A. Porai-Koshits, Acta Cryst. Suppl., 16, A42, (1963).

⁽¹⁴⁾ E. J. Corey and J. C. Bailar, Jr., J. Am. Chem. Soc., 81, 2620 (1959).

Figure 2.—Projection of structure on (100). Only one of the noncoordinated thiocyanate ions is shown.

are, respectively, at -0.72, -0.11, -0.57, and 0.14 Å from their corresponding N-Cu-N planes. The ethylenediamine conformations may also be described by the dihedral angle made by the two N-C-C planes. These angles are 55° in the terminal ethylenediamine groups and 49° in the central group.

Within the ethylenediamine groups there are no significant differences in bond lengths and angles. The average value for the C-C bond lengths is 1.498 (10) Å and that for C-N bond lengths is 1.482 (5) Å.

No significant differences occur within the two thiocyanate ions, whose average values of S–C bonds $(1.641 \ (8) \ \text{Å})$ and N–C bonds $(1.156 \ (10) \ \text{Å})$ are within the range reported for other thiocyanates.

In Figures 2 and 3 the projections of the structure along the b and c axes are shown. The nitrogen atom of

Figure 3.—Projection of structure on (010).

the coordinated thiocyanate, N(1), and both the nitrogen and the sulfur atoms of the uncoordinated thiocyanate, N(2) and S(2), accept two hydrogen bonds; they are diagrammatically shown in Figure 2 and listed in Table IV.

TABLE IV Hydrogen Bonds^a

	Distance, Å	Angle, deg
$N(3^{i})-H(331^{i})\cdots N(1)$	3.103	134.9
$N(6^{i})-H(662^{i})\cdots N(1)$	3.000	149.9
$N(5^{ii})-H(551^{ii})\cdots N(2)$	2.997	174.5
$N(6^{iii})-H(661^{iii})\cdots N(2)$	3.091	171.5
$N(3^{iii})-H(332^{iii})\cdots S(2)$	3.458	171.9
$N(4^{iv})-H(441^{iv})\cdots S(2)$	3.558	138.1
$\begin{array}{l} N(6^{ijii}) - H(661^{ijii}) \cdots N(2) \\ N(3^{iii}) - H(332^{iii}) \cdots S(2) \\ N(4^{iv}) - H(441^{iv}) \cdots S(2) \end{array}$	3.091 3.458 3.558	171.5 171.9 138.1

^a The superscripts have the following significance: (i) $\frac{1}{2} - x$, -y, $z - \frac{1}{2}$; (ii) $\frac{1}{2} - x$, 1 - y, $\frac{1}{2} + z$; (iii) -x, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (iv) $\frac{1}{2} - x$, -y, $\frac{1}{2} + z$.

Acknowledgment.—This work was supported in part by the USA National Science Foundation under Grant GP-7866 and in part by the Italian Consiglio Nazionale di Ricerche.